Mark Scheme (Results)

Summer 2015

IAL Chemistry (WCH04)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code IA041111*
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Section A (multiple choice)

Question Number	Correct Answer	Mark
$\mathbf{1}$	A	1

Question Number	Correct Answer	Mark
$\mathbf{2}$	C	1

Question Number	Correct Answer	Mark
$\mathbf{3}$	A	1

Question Number	Correct Answer	Mark
$\mathbf{4}$	C	1

Question Number	Correct Answer	Mark
$\mathbf{5}$	C	1

Question Number	Correct Answer	Mark
$\mathbf{6 (a)}$	D	1

Question Number	Correct Answer	Mark
$\mathbf{6 (b)}$	B	1

Question Number	Correct Answer	Mark
$\mathbf{7}$	B	1

Question Number	Correct Answer	Mark
$\mathbf{8 (a)}$	D	1

Question Number	Correct Answer	Mark
$\mathbf{8 (b)}$	C	1

Question Number	Correct Answer	Mark
$\mathbf{9}$	B	1

Question Number	Correct Answer	Mark
$\mathbf{1 0 (a)}$	C	1

Question Number	Correct Answer	Mark
$\mathbf{1 0 (b)}$	A	1

Question Number	Correct Answer	Mark
$\mathbf{1 0 (c)}$	D	1

Question Number	Correct Answer	Mark
$\mathbf{1 1 (a)}$	D	1

Question Number	Correct Answer	Mark
$\mathbf{1 1 (b)}$	C	1

Question Number	Correct Answer	Mark
$\mathbf{1 1 (c)}$	A	1

Question Number	Correct Answer	Mark
$\mathbf{1 2 (a)}$	B	1

Question Number	Correct Answer	Mark
$\mathbf{1 2 (b)}$	A	1

Question Number	Correct Answer	Mark
$\mathbf{1 2 (c)}$	B	1

Section B

Questio n Number	Acceptable Answers	Reject	Mark
$\begin{align*} & 13(\mathrm{a}) \\ & \text { (i) } \tag{1} \end{align*}$	$\mathbf{1}^{\text {st }}$ mark: I dentification of buffer Any mention of buffer solution / buffering (region) $\mathbf{2}^{\text {nd }}$ mark: Identification of species responsible for buffering action ammonia/ NH_{3} and ammonium ions $/ \mathrm{NH}_{4}{ }^{+}$ present (in significant concentrations) OR ammonia/ NH_{3} and ammonium chloride $/ \mathrm{NH}_{4} \mathrm{Cl}$ present (in significant concentrations) OR weak base and salt/conjugate acid present (in significant concentrations) OR B and BH^{+}present (in significant concentrations) Can be awarded from a correct equation $3^{\text {rd }}$ mark: For mention of how this buffer works on addition of small amounts of \mathbf{H}^{+} ions (relatively large concentration/reservoir of) ammonia molecules react with added hydrogen ions/ $\mathrm{H}^{+} /($hydrochloric) acid OR (relatively large concentration /reservoir of weak) base reacts with added hydrogen ions / H^{+}/(hydrochloric) acid OR $\mathrm{H}^{+}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4}^{+}$ Allow reversible arrow OR Adding (hydrochloric) acid/ $\mathrm{H}^{+} /$hydrogen ions has negligible effect on ratio $\left[\mathrm{NH}_{3}\right]:\left[\mathrm{NH}_{4}{ }^{+}\right]$ I gnore references to buffering action on addition of OH^{-}(not relevant here) I gnore general descriptions of buffer solution eg resists change in pH when small amounts of acid or alkali added	Acidic buffer Weak acid and its conjugate base HA and A^{-}	3

Question Number	Acceptable Answers	Mark
$\begin{aligned} & \text { 13(a) } \\ & \text { (ii) } \end{aligned}$	Note - the equations $\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$ $\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+}$ score all three marks Note - the equation $\mathrm{NH}_{4}{ }^{+} \rightarrow \mathrm{NH}_{3}+\mathrm{H}^{+}$ scores 2 marks, but if (aq) state symbols are given, scores 3 marks $1^{\text {st }}$ mark: Ammonium ions / $\mathrm{NH}_{4}{ }^{+}$present (at equivalence point) OR ammonium chloride/ammonium salt $2^{\text {nd }}$ mark Ammonium (ions) / $\mathrm{NH}_{4}{ }^{+}$react with water /hydrolysed by water / dissociate in water I gnore ammonium chloride reacts with water $3^{\text {rd }}$ mark $\mathrm{NH}_{4}{ }^{+} \rightarrow \mathrm{NH}_{3}+\mathrm{H}^{+}$ OR $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$ Allow $\begin{equation*} \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+} \tag{1} \end{equation*}$ Note if no other mark awarded Just 'strong acid - weak base (titration)' / ammonium chloride is the salt of a strong acid and a weak base scores (1) only	3

Question Number	Acceptable Answers	Mark
$\begin{aligned} & \text { 13(a) } \\ & \text { (iii) } \end{aligned}$	If final answer is 1.6(2), with correct working or without working, award 4 marks $\begin{align*} & \text { Mol of ammonia used }=(25 / 1000 \times 0.024) \\ & =6 \times 10^{-4} \mathrm{~mol} \\ & \text { and } \\ & \begin{aligned} \text { Mol of acid added }= & (40 / 1000 \times 0.054) \\ = & 2.16 \times 10^{-3} \end{aligned} \end{align*}$ $\begin{align*} & \text { Mol of excess acid }=2.16 \times 10^{-3}-6 \times 10^{-4} \\ & =1.56 \times 10^{-3} \mathrm{~mol} \end{aligned} \quad \begin{aligned} & {\left[\mathrm{H}^{+}\right]=1.56 \times 10^{-3} /(65 / 1000)=0.024 \mathrm{~mol} \mathrm{dm}^{-3}} \tag{1}\\ & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=1.6(2) \tag{1} \end{align*}$ I gnore SF except 1 SF Allow TE for $2^{\text {nd }}, 3^{\text {rd }}$ marks Allow TE for $4^{\text {th }}$ mark provided pH is less than 7 and it is based on some use of data in question $\begin{align*} & \text { Alternative method for } \mathbf{1}^{\text {st }} \text { and } \mathbf{2}^{\text {nd }} \text { marks } \\ & \text { Mol of ammonia used }=(25 / 1000 \times 0.024) \\ & =6 \times 10^{-4} \mathrm{~mol} \end{aligned} \quad \begin{aligned} & \text { and } \\ & \text { Volume of acid used }=\frac{6 \times 10^{-4} \times 1000}{0.054} \\ &=11.111 \mathrm{~cm}^{3} \end{aligned} \begin{aligned} \text { Volume of acid left } & =40-11.111 \\ & =28.889 \mathrm{~cm}^{3} \end{aligned} \begin{aligned} & \text { Mol of excess acid }=\frac{28.889 \times 0.054}{1000} \tag{1}\\ &=1.56 \times 10^{-3} \mathrm{~mol} \end{align*}$	4

Question	Acceptable Answers	Reject	Mark
13(b)(i)	EITHER $\begin{align*} & {\left[\mathrm{H}^{+}\right]^{2}=5.5 \times 10^{-13} \text { or }\left[\mathrm{H}^{+}\right]=\sqrt{ } 5.5 \times 10^{-13} /} \\ & 7.416 \times 10^{-7} \\ & (\mathrm{~mol} \mathrm{dm} \end{align*}$ OR $\begin{equation*} p K_{w}=12.26 \tag{1} \end{equation*}$ $\begin{equation*} \mathrm{pH}=1 / 2 \mathrm{pK}_{\mathrm{w}}(=6.130) \tag{1} \end{equation*}$	6.13 with no working	2

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & \hline 13(b) \\ & \text { (ii) } \end{aligned}$	$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right] /$equal amounts of H^{+}and OH^{-}ions OR Both [H^{+}]and $\left[\mathrm{OH}^{-}\right.$] have increased by the same amount	Acidic or alkaline for both marks	2

Total for Question 13 = 14 marks

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4 (a)}$	The first two marks can be scored from a diagram or a written account	Diagram of apparatus that will not work eg delivery tube starting in solution or side arm conical flask / e.g. flask with delivery tubing attached via bung / side arm boiling/test tube / boiling/test tube with delivery tubing attached via bung	3 (1)

Question Number	Acceptable Answers	Mark
14(b)(i)	Any linked pair of responses. In each pair, the $2^{\text {nd }}$ mark is dependent on the $1^{\text {st }}$ mark being awarded. EITHER Reaction is endothermic / energy taken in / temperature falls Allow just "lower temperature" I gnore room temperature falls Decreases rate of reaction OR There is loss of product/gas before the apparatus is sealed This is greater because the reaction is at a higher concentration (of A) OR Active sites/surface (area) on catalyst full/ blocked/saturated Because the reaction is at a higher concentration (of A)/ decreases rate of reaction I gnore references to experimental error I gnore comparisons of concentrations of A and B I gnore any reference to side-reactions	2

Question Number	Acceptable Answers	Mark
$\mathbf{1 4 (b)}$	0 order (1)	$\mathbf{2}$
(ii)	As increase/ change in concentration does not affect the rate /rate is independent of [A] Allow graph is a horizontal line / has zero gradient (1)	I gnore graph is a straight line Ignore just 'there is no change in the rate' / 'rate is constant' / gradient remains constant

Question Number	Acceptable Answers	Mark
$\mathbf{1 4 (c) (i)}$	ElTHER increases reliability improves validity (of the data obtained) / confirms the initial result / to check for anomalous results Ignore References to average/precision/accuracy	$\mathbf{1}$
OR to determine order w.r.t B and/or X / to determine order w.r.t reactants / substances / to find overall order / to see the effect of B and/or X on the rate/ to see the effect of reactants/ substances on the rate/ to determine rate equation / to calculate k	Allow to find out which species are in the rate determining step	

Question Number	Acceptable Answers	Mark
14(c)(ii)	2nd order w.r.t B (Compare expt $1 \& 2$ when [X] is constant), as [B] triples so rate increases by a factor of 9 First order w.r.t X EITHER (using experiments 1 and 3 or 1 and 4) as [B] quadruples so rate should increase by a factor of 16 but increases by a factor of 32 / additional increase of $x 2$ due to doubling of [X] (hence first order w.r.t X) OR (using experiments 2 and 3 or 2 and 4) as [B] $\times 4 / 3$ (1.333) so rate should increase by a factor of 16/9 (1.778) but increases by 3.556 / additional increase of $x 2$ due to doubling of $[\mathrm{X}]$ (hence first order w.r.t X) Allow these explanations shown as equations If C used instead of X, allow both marks for order and explanation Allow TE on order w.r.t A and B	4

Question Number	Acceptable Answers	Mark
$\mathbf{1 4 (c)}$ (iii)	Rate $=\mathrm{k}[\mathrm{B}]^{2}[\mathrm{X}] /$ Rate $=\mathrm{k}[\mathrm{A}]^{0}[\mathrm{~B}]^{2}[\mathrm{X}]$	$\mathbf{1}$
	Allow r / R for rate and K for k Allow TE from b(ii) and $\mathrm{c}(\mathrm{ii})$	

Question Number	Acceptable Answers	Mark
$\begin{align*} & \text { 14(c) } \\ & \text { (iv) } \tag{1} \end{align*}$	$\begin{aligned} \mathrm{k}=\text { rate } /[\mathrm{B}]^{2}[\mathrm{X}] & =0.08 /(0.1 \times 0.1 \times 0.2) \\ & =40 \end{aligned}$ $\begin{equation*} \mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1} \tag{1} \end{equation*}$ Allow units in any order Allow use of data from experiments $1,2 \& 4$ Allow TE from c(iii)	2

Question Number	Acceptable Answers	Mark
14(d)	Correct feature - two from Mechanism does involve (formation of) a transition state Allow mechanism does involve the (formation of) an intermediate Allow transition/intermediate step Second order overall / $\mathrm{S}_{\mathrm{N}} 2$ /both halogenoalkane and hydroxide ions involves in slow step/rds/ $1^{\text {st }}$ Step (1) Correct curly arrow from $\mathrm{C}-\mathrm{Br}$ bond to Br Transition state has a negative charge / correct charge Or Charges on all species are correct I gnore references to stereochemistry I gnore references to final product correct/ lone pairs correct I ncorrect features - two from Curly arrow should go from OH^{-}to carbon (attached to Br as it represents movement of a lone pair of electrons) / OH^{-}should give electrons rather than accept them Allow the arrow between C and O should be in the opposite direction Bonds to OH and Br should be partial bonds / dotted lines (in transition state as insufficient electrons for (five) complete bonds) / carbon can only form four full bonds Allow Dipole/partial charges on $\mathrm{C}-\mathrm{Br}$ not shown I gnore Mechanism should be 1 step not 2 steps for $\mathrm{S}_{\mathrm{N}} 2$ I gnore there should be a curly arrow from $\mathrm{C}-\mathrm{Br}$ bond to Br in the transition state	4

Total for Question 14 = 19 marks

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (a)}$	ethyl dodecanoate	ethyl decanoate / ethyl ethyldodecanoate ethyl dodecan-1-oate ethyl dodecate / ethanoyl dodecanoate	$\mathbf{1}$

Question Number	Acceptable Answers	Mark
$\mathbf{1 5 (b)}$	Reducing (agent)	$\mathbf{1}$
	Allow (source of) nucleophile Ignore source of hydride ions	

Question Number	Acceptable Answers	Mark
$\mathbf{1 5 (c)}$	Prevent further reduction / reduction of the aldehyde (to an alcohol) Allow to prevent further reaction of dodecanal /aldehyde Ignore reference to rates Ignore higher yield/ prevent side reactions Ignore exothermic / optimum temperature Ignore volatility	$\mathbf{1}$

Question Number	Acceptable Answers	Mark
15(d)	If final answer is $\mathbf{3 . 7 4} \mathbf{(g)}$, with or without working, award 3 marks Moles ester $=5.26 / 228=0.02307 \mathrm{~mol}$ NOTE: Do not allow this rounded to 0.02 EITHER So mass of aldehyde at 100% $\begin{align*} & =0.02307 \times 184 \\ & =4.2449(\mathrm{~g}) \tag{1} \end{align*}$ But yield is 88%, so actual mass $\begin{aligned} & =4.245 \times 0.88 \\ & =3.7355 / 3.74(\mathrm{~g}) \end{aligned}$ Allow 3.73 g if 4.24 g of aldehyde used OR But yield is 88%, so actual moles $\begin{align*} & =0.02307 \times 0.88 \\ & =0.02(03) \tag{1} \end{align*}$ So mass of aldehyde formed $\begin{align*} & =0.0203 \times 184 \\ & =3.7355 / 3.74 / 3.7(\mathrm{~g}) \tag{1} \end{align*}$ Allow TE for $2^{\text {nd }}$ and $3^{\text {rd }}$ marks Ignore SF in final answer except 1SF	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (a) (i)}$	(fractional) distillation / steam distillation / solvent extraction	recrystallisa tion	$\mathbf{1}$
Ignore filtration /use of separating funnel			

Question Number	Acceptable Answers	Mark
$\begin{array}{\|l} \hline 16(a) \\ \text { (ii) } \end{array}$	 $3 \mathrm{C}_{15} \mathrm{H}_{31} \mathrm{COOCH}_{3}$ Allow $3 \mathrm{CH}_{3} \mathrm{OOCC}_{15} \mathrm{H}_{31}$ Allow the correct formulae written three times Correct formula for propane-1,2,3-triol Mark independently	2

Question Number	Acceptable Answers	Mark
$\mathbf{1 6 (a)}$ (iii)	Sodium hydroxide / potassium hydroxide / NaOH / $\mathrm{KOH} / \mathrm{OH}^{-}$	$\mathbf{1}$
Allow sulfuric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}$ or other named strong acids or strong alkalis / $\mathrm{HCl} / \mathrm{just}$ 'acid' / just 'base' / just 'alkali' / just H^{+} I gnore concentrations of reagents, incorrect or missing state symbols		

Question Number	Acceptable Answers	Mark
16(b)	Do not award any marks for processing the plants or seeds into bio-diesel as the question is about growing Award (1) mark for any statement in the following headings: GREEN e.g. samphire / non-edible seeds / both are renewable / (produce bio-diesel that is) carbon neutral Ignore just "green / sustainable" LAND e.g. samphire uses land unlikely to be used for growing other food crops / no need to cut down trees to provide land / non-edible seed take up land otherwise used to grow crops WASTE e.g. non-edible seeds have no other use / would be thrown away / can only be used for oil production FOOD e.g. using samphire for bio-diesel reduces availability as a food source FOOD CHAIN e.g. using samphire disrupts the food chain for (marine) organisms GROWING e.g. samphire doesn't need to be irrigated / can take water or nutrients from the marshland I gnore just 'easier to grow' Ignore does not need specific conditions WEATHER e.g. samphire growing is subject to coastal weather TECHNOLOGY e.g. using samphire needs new / improved technology OR machines to farm coastal areas OR higher transport costs (from marshland to production plant) Ignore technology for processing plants or seeds WI LL IT WORK? e.g. samphire gives unknown yield / use may need more research To score the maximum of 4 marks, the response must include a decision about which is greener but there is no separate mark for this.	4

Total for Question 16 = 8 marks

Section C

Question	Acceptable Answers					Mark
17(a)(i)						3
		$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	O_{2}	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	$\mathrm{H}_{2} \mathrm{O}$	
	$\Delta H_{f}{ }_{f}$ / kJ mol^{-1}	-126.5	0	-484.5	-285.8	
	$\begin{aligned} & \mathrm{S}^{\ominus} / \mathrm{J} \\ & \mathrm{~mol}^{-1} \\ & \mathrm{~K}^{-1} \end{aligned}$	310.1	205	159.8	69.9	
	6 values correct 3 marks 4 / 5 values correct 2 marks 2/3 values correct 1 mark 0/1 values correct 0 marks I gnore values multiplied by balancing numbers in addition to correct values eg for water 2×-285.8 $(=571.6)$					

Question Number	Acceptable Answers	Mark
$\begin{array}{\|l} \hline 17(\mathrm{a}) \\ \text { (ii) } \end{array}$	If answer is - 2256.6 / - 2257 ($\mathrm{kJ} \mathrm{mol}^{-1}$), award 2 marks $\begin{align*} & {[(2 x-285.8)+(4 x-484.5)]} \\ & -(2 x-126.5) \tag{1} \end{align*}$ $\begin{equation*} =-2256.6 /-2257\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ Allow answer converted to mol^{-1} Allow TE from incorrect data in table in (a)(i) Allow (1) for cycle wrong way round eg (+) $2256.6 /(+) 2257\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Allow (1) for using correct values but not multiplied by balancing numbers eg -643.8 ($\mathrm{kJ} \mathrm{mol}^{-1}$) I gnore SF except 1SF	2

Question Number	Acceptable Answers	Mark
$\begin{aligned} & \text { 17(a) } \\ & \text { (iii) } \end{aligned}$	If answer is $\mathbf{- 8 6 6 . 2}\left(\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{\mathbf{- 1}}\right)$, award $\mathbf{2}$ marks $\begin{align*} & {[(2 \times 69.9)+(4 \times 159.8)]-} \\ & \quad[(2 \times 310.1)+(5 \times 205)] \tag{1} \end{align*}$ $\begin{equation*} -866.2\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \tag{1} \end{equation*}$ Allow answer converted to $\mathrm{kJ} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ Allow TE from incorrect data in table in (a)(i) Allow (1) for cycle wrong way round eg (+) 866.2($\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$) Allow (1) for using correct values but error(s) in balancing numbers eg -285.4 ($\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$) I gnore SF except 1SF	2

Question Number	Acceptable Answers	Mark
$\begin{aligned} & \text { 17(a) } \\ & \text { (iv) } \end{aligned}$	If answer is (+)6706.3 $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ or (+)6.7063 kJ $\mathrm{mol}^{-1} \mathbf{K}^{-1}$, award $\mathbf{3}$ marks $\Delta \mathrm{S}_{\text {surr }}$ at $298 \mathrm{~K}=-\Delta \mathrm{H} / \mathrm{T}$ $\begin{equation*} =-(-2256.6 \times 1000) / 298 \tag{1} \end{equation*}$ $=7572.483 \ldots\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ Allow rounding to 3SF or more Allow correct answers given in $\mathrm{kJ} \mathrm{mol}^{-1} \mathrm{~K}^{-1} \mathrm{eg} 7.5725$ kJ $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$ $\begin{aligned} & \Delta \mathrm{S}_{\text {tot }}=\Delta \mathrm{S}_{\text {surr }}+\Delta \mathrm{S}_{\text {sys }} / \Delta \mathrm{S}_{\text {tot }}=-866.2+7572.5 / \Delta \mathrm{S}_{\text {tot }}= \\ & (+) 6706.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned}$ OR $\begin{align*} & -0.8662+7.5725 / \\ & \Delta \mathrm{S}_{\mathrm{tot}}=(+) 6.7063 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \tag{1} \end{align*}$ Allow TE from (a)(ii) and (a)(iii) I gnore SF except 1SF in final answer	3

Question Number	Acceptable Answers	Mark
$\mathbf{1 7 (a) (v)}$	1st mark: consideration of $\Delta \mathbf{S}_{\text {system }}$ $\Delta S_{\text {sys }}$ is not (significantly) changed /is unchanged /remains (approximately) constant	(1)

Question Number	Acceptable Answers	Mark
$\mathbf{1 7 (b)}$	Note: All we are looking for are the correct ranges, exactly as given below (i.e. the bonds do not have to be stated, as they follow from the correct ranges)	$\mathbf{1}$
Peak between $\mathbf{1 7 2 5} \mathbf{- 1 7 0 0}\left(\mathrm{cm}^{-1}\right)$ (would appear due to C=O group (in alkyl carboxylic acid))	Allow peak between 3300 - 2500 (cm^{-1}) (due to OH group (in carboxylic acid))	

Question Number	Acceptable Answers	Mark
$\mathbf{1 7 (c)}$	increase sourness / sharpness of flavour OR preservative / prevents growth of microbes / prevents food decay / prevents food decomposition /kills microbes	$\mathbf{1}$
OR acidity regulator / buffer		
Allow improves flavouring		
Ignore reduce pH/ make (slightly) acidic/just 'flavouring'		

Question Number	Acceptable Answers	Reject	Mark
$\begin{array}{\|l} \hline 17(d) \\ \text { (ii) } \end{array}$	Largest/highest m / e or m / z value (is 160) OR Mass (/charge ratio) or m / e or m / z of molecular/parent ion/ $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{4}{ }^{+}$ $\left(=160\left(=M_{r}\right)\right)$ Allow last peak / peak on rhs (is at 160) Allow peak before last (is at 160 due to M+1 peak at 161)	Highest peak Just 'there is a peak at 160'	1

Question	Acceptable Answers				Mark
$\begin{aligned} & \hline 17(d) \\ & \text { (iii) } \end{aligned}$	For 'chemical shift' column, allow any range or any single value within range and allow range in the opposite order eg 3.0-1.8				4
	Feature of compound X	Chemical shift / ppm for TMS	Splitting patterns	Relativ e area below peak	
	CH_{3}	0.1-1.9	doublet	3 (1)	
	CH	$\begin{aligned} & 1.8-3.0 \\ & (1) \end{aligned}$	septuplet / heptuplet / splits into 7 / 7 splits (1)	1	
	COOH	$\begin{aligned} & 10-12.0 \\ & (1) \end{aligned}$	singlet	1	
	Allow heptet / septet /sevenlet and similar words that indicate 7				

